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A procedure is proposed for the determination of the authenticity of white wines from four German
wine-growing regions (Baden, Rheingau, Rheinhessen, and Pfalz) based on their content of some
major, trace, and ultratrace elements. One hundred and twenty-seven white wine samples possessing
a certificate of origin, all of the 2000 vintage, were analyzed. The concentrations of 13 elements (Li,
B, Mg, Ca, V, Mn, Co, Fe, Zn, Rb, Sr, Cs, and Pb) were determined in wine diluted 1:20 by sector
field inductively coupled plasma mass spectrometry (SF-ICP-MS). Indium was routinely used as
internal standard. Supervised pattern recognition techniques such as discriminant analysis and
classification trees were applied for the interpretation of the data. A quadratic discriminant analysis
(QDA) allowed the four regions to be discriminated with 83% accuracy when using only eight variables
(Li, B, Mg, Fe, Zn, Sr, Cs, and Pb), and the prediction ability for classifying new samples was 76%.
By use of a second method, a decision tree, the classification of samples coming from the four regions
could be performed with an accuracy of 84% when only four elements were used: Li (very low in
samples from Baden), Zn (abnormally low in the samples from the Rheingau), and Mg and Sr (both
important for the differentiation between Pfalz and Rheinhessen samples). For this method, the
prediction ability was only 74% in the identification of unknown samples. The robustness of the QDA
model was not good enough, and therefore the tree is better recommended for the classification of
new wine samples from these areas of German wine production.
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INTRODUCTION

Chemometric classification procedures are very attractive for
the classification of products of certified origin. The extraction
of useful information from measured data and the optimum use
of such analytical information are important objectives of
chemometrics (1). In chemometrics, pattern recognition methods
are especially useful for the classification of a number of
individuals or objects into discrete classes on the basis of
measured features or variables (2). Pattern recognition methods
can be divided into supervised and nonsupervised methods.
Supervised methods, such as linear discriminant analysis (LDA),
K nearest-neighbor (KNN), or soft independent modeling of
class analogies (SIMCA), are used when the classes or groups
are known and the aim is to find rules for deciding in which
class an investigated sample should be placed. Nonsupervised
methods (clustering techniques) are those in which the natural
classification of the objects characterized by a number of

variables is not known and the aim is to define groups of similar
objects (3). A second classification of pattern recognition
methods is between parametric and nonparametric methods. In
the parametric techniques, such as LDA, statistical parameters
for the distribution of the samples are used in the derivation of
the discriminant function. A correct application of the methods
demands that the data fulfill two statistical assumptions: (1) a
normal distribution and (2) equal variance of the classes, that
is, that the classes have equal dispersion of the data in every
variable. Nonparametric methods such as the classification and
regression trees (C&RT) (4) are not explicitly based on
distribution statistics. Classification trees include those models
in which the variables are categorical, and regression trees
include those in which they are continuous.

The use of multielement patterns and pattern recognition
techniques has gained ground in recent years for the geographi-
cal classification of wines originating from different parts of
the world. Pioneering studies on German wines were done by
Siegmund and Bächmann (5) in 1977; they determined 15
elements in 70 wines using neutron activation analysis (NAA).
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A hierarchical cluster analysis could be used to classify the
samples according to their origin. Maarse et al. (6) differentiated
between white wines from the regions Mosel and Pfalz. The
wines were produced from the same grape variety, Riesling,
but from different harvests. Fourteen trace elements were
measured, as were volatile and nonvolatile compounds and
amino acids. LDA resulted in the best differentiation based on
the iron, rubidium, and sodium contents. Thiel et al. (7, 8)
analyzed 16 elements and organic components in 165 wines
from four German wine-growing regions: Saale-Unstrut, Rhein-
gau, Baden, and Rheinhessen. In that work, two subregions of
Baden and two of Rheinhessen were established as groups.
Therefore, a total of six groups of classes were found. LDA
was applied with the best results for geographical identification
(prediction rate of 83%) achieved with B, Ba, Ca, Mg, Pb, Si,
Sr, and V. Because some organic volatile compounds allowed
the differentiation between wines of various grape varieties, a
classification of wines according to geographic origin via varietal
differentiation was attempted using the elements Ba, Sr, Si, and
V and the organic compounds furfural, 3-methyl-1-pentanol,
and 4-methyl-1-pentanol. A recognition ability of 90% was
achieved.

In the accompanying paper we reported on the changes in
metal concentration throughout two typical winemaking pro-
cesses for white wines from five geographically defined wine-
growing regions in Germany: Mittelrhein, Rheinhessen, Rhein-
gau, Baden, and Pfalz. Of the 63 elements investigated, only
13 elements were robust enough for wine origin studies by
showing only minor deviation in their concentration in the must
and in the wine. These 13 elements (ultratrace, trace, and major
components) are Li, B, Mg, Ca, V, Mn, Fe, Co, Zn, Rb, Sr, Cs,
and Pb. The aim of the present work is to check if it is possible
to differentiate between wines from four of these previously
mentioned wine-growing regions in Germany (Baden, Pfalz,
Rheinhessen, and Rheingau) by determining the 13 elements
mentioned and to create a simple rule that allows for a fast
classification of unknown samples.

EXPERIMENTAL PROCEDURES

Material and Reagents.A multielement homemade stock solution
of 13 elements in the concentration range of 25 ng/mL-50 µg/mL was
prepared from the following single ICP standards containing 1000 mg/L
(all from Merck, Darmstadt, Germany): Cs (Cs2CO3), Mn [Mn(NO3)2],
Sr [Sr(NO3)2], and Rb (Rb2CO3), all in 5% HNO3; V (NH4VO3), Li
(LiNO3), Fe [Fe(NO3)3], Co [Co(NO3)2], Pb [Pb(NO3)2], and Zn [Zn-
(NO3)2] in 2-3% HNO3; and B (H3BO3) in H2O. From this initial stock
solution five standards for calibration were prepared. Ca, 1000 mg/L
(CaCO3 in 5% HNO3, Merck), and Mg, 1000 mg/L (Mg(NO3)2 in 2-3%
HNO3, Merck) were also separately added to each calibration standard
in the corresponding amount. Indium (10µg/mL in 5% HNO3) was
used as internal standard in each standard solution with a final
concentration of 1 ng/mL.

Standards were prepared from the above-mentioned homemade stock
solution in polyethylene volumetric tubes (25 mL). HNO3 (125 µL)
and EtOH (125µL) were added (for partial matrix matching) and diluted
with twice-distilled water to the final volume. The concentration range
of the standards for the external calibration depended on the element
and varied from 0.05 ng/mL to 10µg/mL. The concentration of the
elements in the stock solution was selected to simulate the natural wine
concentrations. Blanks were similarly prepared.

A homemade reference wine was prepared for daily quality control
of the analysis. Twenty-five milliliters of a white wine (Nierstein, 2000)
with characteristics similar to those of the samples were diluted with
twice-distilled H2O to 500 mL. This was called quality control Nierstein
(QCN). The wine solution was acidified in the same way as the other
wines to a concentration of∼1% HNO3. Indium was added to a final
concentration of 1 ng/mL.

A cleaning solution containing 2% HNO3 and 0.5% EtOH was
freshly prepared each day for cleaning the system between wine
samples. Finally, a tuning solution (1 ng/mL) was prepared from a
multielement standard solution with nine elements (10µg/mL of Be,
Bi, Ce, Co, In, Mg, Ni, Pb, and U; multielement solution 5 from
Cläritas, Spex, Germany) for the daily tuning of the instrument.

Wine Samples.A set of 127 commercially available German white
wines was analyzed. The wines were selected according to the following
properties: (a) white wines from one of the German regions [Baden
(B), n ) 29; Rheingau (RG),n ) 36; Rheinhessen (RH),n ) 30; or
Pfalz (P),n ) 32]; (b) a certified origin as demonstrated by the official
control number (A.P.Nr.;Amtliche Prüfungsnummer); this number is
given to every wine that passes an official control and ensures (9, 10)
that (i) the wine comes from the region mentioned so they are Q.b.A.
(Qualitätswein bestimmter Anbaugebiete), (ii) the wine was produced
from the authorized grape variety, and (iii) the wine has the minimum
sugar and alcohol contents required for its quality classification and
the wine-growing region]; (c) being of the vintage 2000 (this criterion
was used to avoid the possible year-to-year variations in the concentra-
tion of some elements); (d) belonging to one of the main German grape
varieties (Riesling, Müller-Thurgau, Gutedel, Kerner, Silvaner, Weiss-,
or Grauburgunder) (it was not possible to find varied enough samples
for only one grape, as would have been desirable); (e) being a dry
wine, thereby reducing plasma problems due to the higher sugar content
of sweet wines.

For sample preparation, the corks were carefully removed from the
bottle and an aliquot was decanted into PP tubes of 50 mL capacity.
The tubes were washed twice with the wine before the final filling.
The diluted samples were prepared daily in sterile PP centrifuge tubes
of 15 mL capacity by taking 0.5 mL from the PP tubes and diluting to
10 mL using HNO3 subb. (Merck) and EtOH 98% p.a. (Merck) to reach
concentrations of 1 and 0.5%, respectively. Every sample of wine was
prepared in triplicate. After sample preparation, the PP tubes were dated
and stored in the refrigerator as back-up. The wine bottles were closed
and stored at room temperature.

ICP-MS Analysis. The ICP-MS was a sector field ICP-MS (Element
2, Finnigan MAT, Bremen, Germany). Typical operating conditions
are shown inTable 1. The 13 elements for analysis were chosen as in
our previous study (accompanying paper). The isotopes of the elements
were chosen due to their major natural abundance. Some of these
isotopes suffer from spectral interferences, and in such instances
medium resolution (R) 4000) instead of low resolution (R ) 400)
was used for25Mg (f12C2

1H+), 44Ca (f12C16O2
+, 88Sr2+), 55Mn

(f40Ar14N1H+, 39K16O+), 56Fe (f40Ca16O+), and 59Co (f43Ca16O+).

Table 1. Operating Conditions for the SF-ICP-MS Intrument: Element
2 (Finnigan MAT, Bremen, Germany)

parameter value

analyzed isotopes per
resolution

low (R ) 400): 7Li, 11B, 51V, 66Zn, 68Zn,
85Rb, 88Sr, 115In, 133Cs, 206Pb,

207Pb, 208Pb
medium (R ) 4000): 25Mg, 26Mg, 44Ca,

55Mn, 56Fe, 59Co, 115In

cooling gas (L/min) 16
auxiliary gas (L/min) 1−1.1
sample gas (L/min) 1.06−1.08
plasma power (W) 1210−1300
guard electrode yes
sample uptake (mL/min) 0.75
autosampler ASX 500 (Cetac, Omaha, NE)
spray chamber Scott (cooled to 4 °C)
nebulizer Meinhard
cones Ni-cones, i.d.: sampler, 1 mm;

skimmer, 0.7 mm

data acquisition procedure no. of scans: 15
scan type: EScan
dwell time: 10 ms/channel
samples per peak: 26
isotope segment duration: 0.3 s
acquisition time: 120 s
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The instrument was tuned daily and compromise instrumental conditions
were set to achieve the optimal signal intensity and stability for Li, In,
and Ce.

The analyses were routinely performed with the aid of an Autosam-
pler (ASX 500, Cetac, Omaha, NE). Every day, two to three series
were measured, each series consisting of five wines (three replicates
of each one), five calibration standards, five blanks, and two quality

control samples. The system was rinsed with the cleaning solution for
2 min between samples and also 2 min with the sample itself before a
measurement was started. As quality control samples, one of the
standards with intermediate concentrations and the QCN wine were
measured at the end of each series for (i) checking any drift of the
system during measurement and (ii) checking the day-to-day reproduc-
ibility of the system. By plotting Shewhart charts (11) of every element,
we could easily check when the measurement should be repeated. For
an example of a control chart, seeFigure 1 for the case of Li. The
mean value and the associated standard deviation (s) were calculated
by measuring QCN a number of times under a variety of conditions.
Warning limits are set at(2sand action limits at(3s. Measuring points
outside the action limits were deleted and the measurements repeated.
When points fell outside the warning limits, the measurements were
carefully checked for error sources and, depending on the case, repeated
or not.

After analysis of all the samples, 12 of the stored wine samples were
randomly selected from all four regions and again measured to test the
stability of the samples with time. The results were satisfactory with
differences of<10% during a period of 3 months.

Figure 1. Shewhart chart for the day-to-day variation of lithium concentration in the QCN wine throughout the measurement period: <x>, mean value;
UAL, upper action limit; UWL, upper warning limit; LWL, lower warning limit; LAL, lower action limit (values are given in ng/mL).

Table 2. Recovery Percentagesa Obtained for the Spiked Quality
Control Nierstein Wine by SF-ICP-MS

element recovery %a element recovery %a

Li 105.5 ± 9.4 Fe 90.0 ± 7.0
B 96.5 ± 7.6 Zn 81.5 ± 3.4
Mg 89.2 ± 7.3 Rb 91.7 ± 8.2
Ca 96.0 ± 8.0 Sr 97.2 ± 5.1
V 93.5 ± 5.9 Cs 94.2 ± 3.7
Mn 87.4 ± 7.9 Pb 91.8 ± 6.6
Co 82.9 ± 5.2

a Mean ± standard deviation.

Table 3. Quality Control Nierstein Measured by SF-ICP-MS, ICP-OES,
and TXRFa

SF-ICP-MS ICP-OES TXRF

Li 70.0 ± 4.4 64 ± 5 ndb

B* 5.6 ± 3.6 nd
Mg* 92.7 ± 4.4 93 ± 2 nd
Ca* 131.0 ± 5.4 107 ± 3 105 ± 10
V 15.3 ± 0.9 <22 <20
Mn* 1.3 ± 0.4 1.2 ± 0.1 1.2 ±0.1
Fe* 3.6 ±0.1 3.5 ± 0.1 3.4 ± 0.2
Co 5.6 ± 0.3 <17 nd
Zn 1.2 ± 0.05 1.1 ± 0.1 1.1 ± 0.1
Rb 291 ± 11 380 ± 20 300 ± 20
Sr 473 ± 11 410 ± 20 500 ± 30
Cs 1.6 ± 0.1 <1000 nd
Pb 37.8 ± 1.3 <50 <70

a Data are given in ng/mL unless denoted by an asterisk (*), which are in µg/
mL. b Not detectable.

Table 4. Concentration and Day-to-Day Precision of the Quality
Control Nierstein Measured over the Period of 3 Monthsa

element x̄ (ng/mL) s (ng/mL) RSD (%)

Li 70.0 4.4 6.3
B 5640 356 6.3
Mg 92700 4423 4.8
Ca 131000 5372 4.1
V 15.3 0.88 5.8
Mn 1250 42 3.3
Fe 3630 111 3.0
Co 5.59 0.29 5.2
Zn 1190 46 3.9
Rb 291 11 3.8
Sr 473 11 2.4
Cs 1.59 0.05 3.2
Pb 37.8 1.3 3.4

a x̄ ) mean concentration (n ) 47); s ) standard deviation; RSD ) relative
standard deviation (values are given in ng/mL).
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Table 5. Limits of Quantification (10s, 11 Blanks), Median, Minimum, and Maximum Values of 13 Elements in German White Wines from the
Wine-Growing Regions of Baden, Rheingau, Rheinhessen, and Pfalza

Baden (29 samples) Rheingau (36 samples) Rheinhessen (30 samples) Pfalz (32 samples)

LOQ median min max median min max median min max median min max

Li 0.24 3.3 1.5 7.3 13 4.5 49 31 9.5 75 9.0 3.0 150
B* 0.17 4.3 3.3 5.5 4.0 3.2 5.2 4.9 3.2 7 4.1 3.3 7.1
Mg* 0.01 71 61 81 74 66 100 91 75 137 73 60.7 105
Ca* 0.06 88 58 150 110 85 180 120 61 431 110 72.8 190
V 0.03 7.5 1.2 364 58 4.6 260 36 7.2 228 57 3.12 220
Mn* 0.001 1.0 0.7 1.4 0.9 0.3 2.1 1.1 0.1 1.8 1.0 0.7 1.7
Fe* 0.01 1.0 0.4 3.9 1.1 0.4 3.5 3.6 0.5 9.9 2.2 0.5 4.4
Co 0.08 2.7 1.1 4.7 4.2 1.3 15 4.6 0.4 12 5.3 1.1 12
Zn* 0.05 1.1 0.7 1.8 0.3 0.01 3.8 1.1 0.1 3.9 1.2 0.3 2.2
Rb 0.21 380 230 800 360 250 690 430 160 970 380 180 600
Sr 0.27 250 170 380 390 230 900 530 380 970 340 170 590
Cs 0.01 1.9 0.7 6.1 3.8 0.2 50 1.4 0.1 6.3 2.4 0.4 15
Pb 0.47 9.7 3.0 41 23 12 230 32 15 85 23 9.8 63

a All concentrations are given in ng/mL unless denoted by an asterisk (*), which are given in µg/mL.

Table 6. Pearson Correlations Obtained for Average Multielement Concentrations in the Different Wines of the Different Regions: Pfalz (P), Baden
(B), Rheinhessen (RH), and Rheingau (RG)

Li B Mg Ca V Mn Fe Co Zn Rb Sr Cs Pb

Li P 1 0.498 0.084 −0.044 0.26 −0.095 −0.327 −0.144 0.368 0.427 0.55 0.657 −0.16
B 1 0.126 0.382 0.326 0.373 0.037 0.122 0.532 0.571 −0.18 0.412 0.009 0.41
RG 1 −0.079 0.288 0.012 0.205 0.278 0.011 −0.059 0.18 0.581 0.298 0.448 0.117
RH 1 0.324 −0.028 −0.273 0.037 0.353 0.391 0.284 0.112 0.357 0.153 0.317 −0.08

B P 0.498 1 0.421 0.202 0.348 0.096 0.01 0.061 0.529 0.166 0.557 0.33 0.203
B 0.126 1 0.425 0.286 0.247 0.475 0.127 0.025 0.066 0.339 0.625 −0.219 0.143
RG −0.079 1 0.514 0.104 −0.102 0.269 −0.167 0.006 −0.076 0.256 0.48 −0.035 −0.074
RH 0.324 1 0.681 0.242 0.196 0.033 −0.132 −0.246 −0.156 0.177 0.597 0.309 −0.086

Mg P 0.084 0.421 1 0.306 −0.016 0.525 0.545 0.265 0.38 0.259 0.607 −0.178 0.76
B 0.382 0.425 1 0.584 0.123 0.295 −0.038 0.246 0.402 0.385 0.592 0.334 0.381
RG 0.288 0.514 1 0.443 −0.242 0.753 0.134 0.133 0.463 0.416 0.839 0.22 0.429
RH −0.028 0.681 1 0.673 0.166 0.143 −0.078 −0.077 −0.084 0.138 0.805 0.18 0.183

Ca P −0.044 0.202 0.306 1 0.463 0.188 0.239 0.036 0.149 0.046 0.392 −0.276 0.109
B 0.326 0.286 0.584 1 0.05 0.306 0.145 0.172 0.223 0.031 0.354 0.336 0.271
RG 0.012 0.104 0.443 1 −0.186 0.382 0.247 −0.014 0.327 0.085 0.338 0.031 0.316
RH −0.273 0.242 0.673 1 0.06 −0.142 −0.212 −0.114 −0.211 −0.173 0.643 0.039 0.169

V P 0.26 0.348 −0.016 0.463 1 0.016 −0.172 −0.01 0.294 −0.079 0.262 0.184 −0.302
B 0.373 0.247 0.123 0.05 1 −0.333 0.085 0.331 0.362 −0.115 0.195 −0.067 0.073
RG 0.205 −0.102 −0.242 −0.186 1 −0.18 0.282 −0.122 −0.093 −0.07 0.071 −0.006 −0.089
RH 0.037 0.196 0.166 0.06 1 −0.193 −0.246 −0.183 −0.34 −0.224 0.201 0.383 −0.216

Mn P −0.095 0.096 0.525 0.188 0.016 1 0.533 0.304 0.374 0.153 0.316 −0.202 0.537
B 0.037 0.475 0.295 0.306 −0.333 1 0.222 −0.043 −0.358 0.24 0.646 −0.026 0.166
RG 0.278 0.269 0.753 0.382 −0.18 1 0.407 0.484 0.637 0.333 0.753 0.364 0.597
RH 0.353 0.033 0.143 −0.142 −0.193 1 0.367 0.439 0.446 0.687 0.169 0.177 0.035

Fe P −0.327 0.01 0.545 0.239 −0.172 0.533 1 0.401 0.148 0.189 0.284 −0.564 0.708
B 0.122 0.127 −0.038 0.145 0.085 0.222 1 0.36 −0.098 0.381 0.193 −0.177 0.276
RG 0.011 −0.167 0.134 0.247 0.282 0.407 1 0.4 0.368 −0.102 0.247 0.201 0.416
RH 0.391 −0.132 −0.078 −0.212 −0.246 0.367 1 0.726 0.363 0.246 −0.08 −0.141 0.336

Co P −0.144 0.061 0.265 0.036 −0.01 0.304 0.401 1 0.222 −0.094 0.145 −0.104 0.311
B 0.532 0.025 0.246 0.172 0.331 −0.043 0.36 1 0.402 −0.09 0.44 −0.026 0.273
RG −0.059 0.006 0.133 −0.014 −0.122 0.484 0.4 1 0.348 0.045 0.361 0.272 0.268
RH 0.284 −0.246 −0.077 −0.114 −0.183 0.439 0.726 1 0.275 0.434 −0.163 −0.002 0.041

Zn P 0.368 0.529 0.38 0.149 0.294 0.374 0.148 0.222 1 0.274 0.385 0.245 0.113
B 0.571 0.066 0.402 0.223 0.362 −0.358 −0.098 0.402 1 0.036 0.087 0.001 −0.009
RG 0.18 −0.076 0.463 0.327 −0.093 0.637 0.368 0.348 1 −0.002 0.42 0.517 0.705
RH 0.112 −0.156 −0.084 −0.211 −0.34 0.446 0.363 0.275 1 0.206 0.061 0.223 0.428

Rb P 0.427 0.166 0.259 0.046 −0.079 0.153 0.189 −0.094 0.274 1 0.414 0.375 0.157
B −0.18 0.339 0.385 0.031 −0.115 0.24 0.381 −0.09 0.036 1 0.179 −0.023 0.219
RG 0.581 0.256 0.416 0.085 −0.07 0.333 −0.102 0.045 −0.002 1 0.354 0.341 −0.124
RH 0.357 0.177 0.138 −0.173 −0.224 0.687 0.246 0.434 0.206 1 0.009 0.338 −0.253

Sr P 0.55 0.557 0.607 0.392 0.262 0.316 0.284 0.145 0.385 0.414 1 0.084 0.476
B 0.412 0.625 0.592 0.354 0.195 0.646 0.193 0.44 0.087 0.179 1 0.004 0.23
RG 0.298 0.48 0.839 0.338 0.071 0.753 0.247 0.361 0.42 0.354 1 0.314 0.505
RH 0.153 0.597 0.805 0.643 0.201 0.169 −0.08 −0.163 0.061 0.009 1 0.322 0.21

Cs P 0.657 0.33 −0.178 −0.276 0.184 −0.202 −0.564 −0.104 0.245 0.375 0.084 1 −0.373
B 0.009 −0.219 0.334 0.336 −0.067 −0.026 −0.177 −0.026 0.001 −0.023 0.004 1 0.399
RG 0.448 −0.035 0.22 0.031 −0.006 0.364 0.201 0.272 0.517 0.341 0.314 1 0.349
RH 0.317 0.309 0.18 0.039 0.383 0.177 −0.141 −0.002 0.223 0.338 0.322 1 −0.241

Pb P −0.16 0.203 0.76 0.109 −0.302 0.537 0.708 0.311 0.113 0.157 0.476 −0.373 1
B 0.41 0.143 0.381 0.271 0.073 0.166 0.276 0.273 −0.009 0.219 0.23 0.399 1
RG 0.117 −0.074 0.429 0.316 −0.089 0.597 0.416 0.268 0.705 −0.124 0.505 0.349 1
RH −0.08 −0.086 0.183 0.169 −0.216 0.035 0.336 0.041 0.428 −0.253 0.21 −0.241 1
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Pattern Recognition Techniques.Two statistical programs were
used: Systat (version 7.0.1, 1997, SPSS Inc.) for the discriminant
analysis and SPSS Answer Tree (version 2.1G, SPSS Inc.) for the
classification and regression trees.

RESULTS AND DISCUSSION

Quantitative Analysis and Element Content of German
White Wines. Recovery studies were carried out on the QCN
wine because no wine reference material is available and the
accuracy had to be checked. The QCN wine was spiked in
triplicate with the multielement homemade stock solution. The
mean and the standard deviation were calculated from the
recovery values obtained for the three analyses. The recovery
percentages are shown inTable 2. They lie between 81.5(
3.4% (for Zn) and 105.5( 9.4% (for Li) with an average value
of 92.1 ( 6.3%. For Zn and Co the recovery percentage was

quite low, ∼80%. By the application of other measurement
techniques such as ICP-OES and TXRF, SF-ICP-MS results
for QCN were validated. Results are compiled inTable 3.
Unfortunately, neither of the techniques was sensitive enough
to quantify the elements V, Co, Cs, and Pb. The elements Li
and Mg could be compared only with the ICP-OES values
because both elements cannot be measured by TXRF. B was
not possible to measure by ICP-OES due to instrumental
problems. Otherwise, the results for the other elements agreed
quite well. Additionally, the QCN sample was used to verify
the day-to-day reproducibility (Table 4) of the concentration
measurement using the actual method over a 3 month period.
In general, the RSD was between 2.4% for Sr and 6.3% for Li
or B. Typically, a value of∼4% was reached.

The results were satisfactory and the proposed methodology
was used for the analysis of German white wines.

Figure 2. SPLOM (scatter plot matrix) of some elements in the samples from B, P, RG, and RH. The concentrations of the elements are presented
against each other for each group.

Table 7. QDA Results Taking All of the Samples (Eigenvalues, Proportions of Total Dispersion Explained with Each Canonical Discriminant
Function, and Coefficients of Those Discriminant Functions)

unstandardized functions coefficientsdiscriminant
function eigenvalue

proportion of total
dispersion explained (%) constant Li B Mg Fe Zn Sr Cs Pb

1 3.221 59.1 0.00 1.401 −0.179 0.536 0.498 −0.497 −0.138 −0.139 0.185
2 1.865 93.3 −0.00 0.387 0.583 0.587 0.408 0.982 −1.003 −0.663 −0.489
3 0.367 100 0.00 0.539 0.449 −1.298 0.094 0.431 −0.454 0.119 0.861
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The measured metal contents are listed inTable 5. Generally
the samples from Baden show lowest concentration for the
elements Li, Mg, Ca, Fe, Co, Sr, and Pb. Li is present in a
concentration up to 10 times and Pb almost 3 times lower than
in the other groups. RH samples have the highest content for
10 of the 13 elements, Li, B, Mg, Ca, Mn, Fe, Zn, Rb, Sr, and

Pb, but the lowest Cs content. Their low Zn and high Cs contents
characterize RG samples. All in all, except for the concentrations
of Li in Baden samples and Zn in RG samples, no significant
differences in concentrations between groups exist. The range
of concentrations within a region vary, with B, Mg, Ca, Mn,
Zn, Rb, and Sr quite constant, whereas other elements such as

Figure 3. Scatter plot of discriminant functions after quadratic discriminant analysis of the concentrations of Li, B, Mg, Fe, Zn, Rb, Cs, and Pb in German
white wines from four wine-growing regions: Baden (B), Rheingau (RG), Rheinhessen (RH), and Pfalz (P).

Figure 4. Scatter plot of discriminant functions after quadratic discriminant analysis of the concentrations of Li, B, Mg, Mn, Fe, Zn, Rb, and Cs in German
white wines from three wine-growing regions: Baden (B), Rheingau (RG), and Rheinhessen (RH).
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Li (especially in Pfalz), V, Fe, Co, Cs, and Pb (especially in
RG) show a large range.

Pearson correlations between the mean values of the 13
elements in each of the wine-growing regions were investigated
in order to find eventual interesting relationships. The correlation
coefficients appear inTable 6. Significant correlations have been
found between Mg and Sr in all of the groups, especially in the
RG (0.84) and RH (0.81) groups. Other important correlations
are as follows: (a) In the RG samples, Zn (present in much
smaller concentration than in the other groups) is correlated with
Pb (0.7) and Mn (0.64). Also in these samples there is a
correlation between Sr and Ca (0.84) and Mn (0.75) and between
Mn and Mg (0.75). (b) In the RH samples there is a correlation
between Mg and B (0.68) and Ca (0.67), Fe and Co (0.73), and
Mn and Rb (0.69). (c) In the Pfalz samples Pb is correlated
with Mg (0.76) and with Fe (0.71), and Li is weakly correlated
with Cs (0.66).

Data Treatment and Geographic Identification. Some
measured values appeared to be inconsistent with the rest of
the data. Such wines were twice measured, and in all cases the
trueness of the data was confirmed. Therefore, these apparent
outliers were treated as genuine data, and we concluded that
they only indicated a non-normal distribution of the data. To
prepare the data for discriminant analysis (DA), a log transfor-
mation for normalization of tailed distributions was performed.
Because the chosen elements are present in wine in very
different concentration ranges (from ng/L to mg/L levels), an
autoscaling by az-transformation was additionally done. For
this, a new variablez was defined according tozik ) (xik - xjk)/
sk, wherezik is the valuei for the variablek after scaling,xik is
the valuei for the variablek before scaling,xjk is the mean of
the variablek, andsk is the standard deviation of the variablek.
The resultingz is a variable with zero mean and unit standard
deviation. Detection limits were included for some elements
with values below the LOD for completion of the data set, a
prerequisite for chemometric methods. The average values of
three measurements were used both for DA analysis and for
the classification tree.

Discriminant Analysis.DA is a method that maximizes the
variance between classes and minimizes the variance within
classes or categories. In LDA, one tries to reduce the number
of variables that allow us to distinguish between classes by
creating new variables, which are linear combinations of the
original variables (canonicalVariablesor canonical discriminant
functions).

LDA is a parametric method, which means that it is based
on certain statistical assumptions such as equality between the
variance and covariance matrices of the groups to be separated.
This means that the classes must have equal dispersion. In
Figure 2, SPLOMs (scatter plot matrix) of some of the variables
in the four groups are represented. Because the sample sizes
do not differ markedly (29-36 samples per group), the
distribution for each pair of variables should have approximately
the same shape and tilt across groups if the equality of
covariance assumption holds. This is not the case, and therefore
not a linear but a quadratic discriminant model is recommended,
QDA (1). The main disadvantage of this model is the math-
ematical sophistication of the resulting classification functions;
thus, a previous reduction of variables is mandatory. Using the
stepwise modeling option (add or delete one variable at each
step), it is possible to identify the most relevant variables.

Once a model has been obtained, it is still necessary to
demonstrate the quality of the model, and therefore cross-
validation techniques are often applied, two of which are used

here. In theK-fold cross-Validation the whole data set is
randomly divided inK subgroups as equal in size as possible,
constituting the learning or training sample set (i.e., those with
known origin). The model of the specified size is computedK
times, each time leaving out one of theK groups from the
computations and using the group left out as test set (i.e., those
with “unknown” origin which have to be classified). Every
subgroup is usedK - 1 times in the learning set and just once
as the test set. Every result computed for each of theK testing
sets is then averaged to give theK-fold estimate of the cross-
validation. Whenk ) 1, one has the leaving-out-one or
jackknifed method, and only one case is removed and replaced
at a time. This approach, however, may still give an overly
optimistic situation. In the so-calledtest sample cross-Validation,
the samples are again divided into two groups: the learning
and the test sample sets. The proportion is usually 70% of the
total samples must be part of the learning set and 30% part of
the test set. Therecognition (or classification) abilityis the
percentage of the members of the training sample set that are
correctly classified. Theprediction ability is the percentage of
the members of the test sample set that are correctly classified

Table 8. Classification Quote (Jackknifed Cross-Validation Method)
and Recognition and Prediction Ability (Test Set Cross-Validation
Method) of German White Wines from Baden, Rheingau,
Rheinhessen, and Pfalz by Using a QDA with Only Eight Variables:
Li, B, Mg, Fe, Zn, Sr, Cs, and Pb

(A) Regional Distribution of the Tested Wine Samples

sample sets B P RG RH total

all samples 29 32 36 30 127
learning set (70%) 22 18 26 18 84
test set (30%) 7 14 10 12 43

(B) Classification Quote (%),
All Samples (Jackknifed Method)

predicted group

origin
no. of

samples B P RG RH
classification

quote (%)

B 29 26 2 1 0 90
P 32 2 24 4 2 75
RG 36 1 2 31 2 86
RH 30 0 3 2 25 83

83 (overall)
total 127 29 31 38 29

(C) Recognition Ability (%),
Learning Set (70%)

predicted group

origin
no. of

samples B P RG RH
classification

quote (%)

B 22 22 0 0 0 100
P 18 2 14 1 1 78
RG 26 0 1 24 1 92
RH 18 0 1 0 17 94

92 (overall)
total 84 24 16 25 19

(D) Prediction Ability (%),
Test Set (30%)

predicted group

origin
no. of

samples B P RG RH
classification

quote (%)

B 7 7 0 0 0 100
P 14 1 12 0 1 86
RG 10 0 2 7 1 70
RH 12 0 0 1 11 92

86 (overall)
total 43 8 14 8 13
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by using the decision functions or classification rules achieved
with the training sample set.

In a first attempt at stepwise modeling (forward and backward
variable selection options), in both cases the variables Ca, V,
Mn, Co, and Rb did not contribute significantly to the
discrimination model, so they were removed from the model.
Thus, a quadratic model with Li, B, Ca, Mg, Fe, Zn, Sr, and Pb
was chosen for German wine region discrimination. By applying
the QDA, three canonical discriminant functions were obtained.
Results are summarized inTable 7. The first canonical variable
is the quadratic combination of the variables that best discrimi-
nate among the groups; the second canonical variable is
orthogonal to the first and is the next best combination of
variables, and so on. Here the coefficients for each variable in
every discriminant function and the discriminant power associ-
ated with the three functions are shown. To test these functions
for statistical significance, the eigenvalues associated with each
one were evaluated. Eigenvalues provide an indication of the
relative importance of the function. The first eigenvalue (3.221)
is quite large relative to the others, indicating that the first
function captures most of the differences between groups; it
accounts for 59.1% of the total dispersion of the groups. The
second function has an eigenvalue of 1.865 and accounts for

34.2% of the dispersion between groups. The third function has
an eigenvalue of 0.367 that indicates an almost insignificantly
contribution to the discriminating power. Consequently, because
>90% of total variance of the data can be explained by using
the first and second canonical functions, only the two first
discriminant functions were used for computation. Therefore,
the simple discriminant function 1 versus discriminant function
2 scatter point plot is adequate to distinguish between the
German wines under investigation. As can be seen inFigure
3, every region is more or less well-defined except the Pfalz
region, which appears to be overlapping the other three.

With this model a classification rate of 92% was achieved.
For testing the goodness of this proposed quadratic model, two
different cross-validation procedures were performed.Table 8B
summarizes the classification quote (%) (following the jack-
knifed cross-validation with all of the samples) andTable 8C
the recognition and prediction ability (%) (following the test
sample cross-validation procedure) for one of the trials. If the
model is built with all of the data and checked with the
jackknifed method, the overall classification quote was of 83%.
After a close look at each group inTable 8B,a good recognition
ability of 83% was found for the RH samples. In the case of
RG samples 86% were correctly classified, but 7 samples from

Table 9. Geographical Wine Classifications through Element Patterns, Organic Compounds, and Classic Enological Wine Parameters

wines variables
measuring
techniques

pattern
recognition
techniques

important variables
for origin

determination ref

51 German white wines from
Mosel and Pfalz

14 elements: Mn, Al, Cu, Co, Ni,
Cr, Na, K, Fe, Mg, Ca,
Zn, Li, Rb

GC-MS
FAAS
AAS

PCA
KNN

Rb, Na, Fe 6

volatile and nonvolatile compounds AES
amino acids

34 French red wines from
three regions

anthocyanin and flavonoid
constituents

FAAS
FAES

F statistics
PCA

Rb, Li, Ca, Mg 14

amino acids SDA amino acids: arginine,
aromatic alcohols ethanolamine
7 elements: Rb, Li, Ca, Mg, Mn, K, Na

273 Italian white wines from
five Venetian regions

6 elements: Na, K, Ca, Mg, Cl, Li AAS
FAAS

EDGC
KNN

cis-3-hexen-1-ol 16

aroma compounds GC-MS PCA 1-hexanol
classic enological parameters SIMCA K

CVA N-compounds, total phenols
165 German white, red, and rosé

wines from Rheinhessen,
Rheingau, Baden, and
Saale-Unstrut

16 elements: Al, B, Ba, Ca, Cr, Cu,
Fe, Mg, Mn, P, Sb, Si, Sn,
Sr, V, Zn

ICP-AES HCA
PCA
LDA

(a) B, Ba, Ca, Mg, Pb, Si,
Sr, V

7, 8

58 volatile compounds HS-SPME-GC-MS (b) Ba, Si, V, Sr, furfural,
3-methyl-1-pentanol,
4-methyl-1-pentanol

39 red Spanish wines from
Ribeira Sacra and non-
Ribeira Sacra

volatile and phenolic compounds
9 elements: Li, Na, K, Rb, Zn, Fe,

Mn, Ni, Co

AES
AAS

HCA
PCA
LDA

Li, Fe, Rb 16

KNN
SIMCA
BASTEP

2 polyphenols

71 rosé Spanish wines from
Ribera del Duero, La Rioja,
Valdepeñas and La Mancha

classic enological parameters
phenolic compounds
color parameters

AAS
UV−vis

ANOVA
SLDA

12 variables: EtOH, total SO2,
proanthocyanidins,
color intensity,
tonality, ..., etc.

17

7 elements: Ca, Mg, Zn, Na, K, Fe, Cu Ca, Fe, Zn, Na
41 red Italian wines from three

areas in the Apulia region

1H NMR spectra (0.5−5 ppm)
11 elements: Al, B, Cu, Fe, Zn, Mn,

Ba, Na, K, Mg, Ca

1H NMR
ICP-OES

HCA
PCA
LDA

amino acids 18

classic enological parameters heavy metals
33 wines from Apulia and

Slovenia
ash, organic acids
1H NMR spectra (0.5−5 ppm)

ICP-OES HCA
PCA
DA

amino acids 19

7 elements: Ba, Cu, Al, Zn, B, Mn, Fe 1H NMR heavy metals
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other groups were also included in the RG group; with regard
to B samples, they were classified with a 90% success quote,
and only 3 samples from other groups were also included as
belonging to the B group. The worst classified group was Pfalz
(75%); moreover, 7 samples from the other regions were
classified as P samples.

Following the second cross-validation method, as can be seen
in Table 8C for one of the trials, in the learning test a good
overall recognition ability of 92% was found; results were
especially good for B (100%), RH (94%), and RG (92%). Only
in the case of P samples was a poor classification quote of 78%
achieved because four Pfalz samples were misclassified. In the
test set, the total prediction ability is 86% (Table 8D) because
37 of 43 samples were correctly classified. The best prediction
abilities were again obtained for B (100%) and RH (92%)
samples. All B wines were correctly recognized with only one
misclassification case. The worst rates were for P and RG
samples because only 70% of the samples were properly
classified into the RG group and 86% into the P group. To check
the dependence between the results and the test set population,
this quadratic model, as it is, was several times performed by
varying randomly the members of the test and learning set.
Among 10 different trials the overall classification quote for
the test set varied between 59 and 86% (on average, 76%):
group by group, for the B samples between 56 and 100%; for
the P samples, between 50 and 86%; for the RG samples,
between 64 and 100%; and finally for the RH samples, between
60 and 100%. The results varied quite significantly and seemed

to strongly depend too much on the actual objects in the training
set, especially in the case of P samples. It gave not a positive
impression about the robustness of this chemometric method
when applied to unknown samples.

If the Pfalz samples are eliminated and the classification
problem is restricted to the remaining region samples, a new
model can be built. In this case and after stepwise modeling,
nearly the same eight elements but with Mn instead of Pb were
selected for best classification. Again by checking the model
after the jackknifed method a total classification quote of 95%
was achieved. By the test set cross-validation method and after
10 trials, a recognition ability between 94 and 100% (98% on
average) and a prediction ability between 85 and 94% (88% on
average) were achieved. The method seems to be quite robust,
allowing especially B and RG samples to be well recognized
and well predicted.Figure 4 shows the separation of these
regions. Some samples are nevertheless close neighbors to those
of the other groups.

The incomplete differentiation between subregions indicates
a nonoptimal separation due to the following: (i) The geocli-
matic conditions (soils, weather, etc.) of these geographically
close wine-growing regions are too similar to reflect this
diversity in the wines. (ii) Q.b.A. wines can be sweetened at
the end of the winemaking process with a maximum of 15%
from a sweet must that comes from the same wine-growing
region but can come from another vintage (12). If some of these
wines were sweetened, its elemental pattern could be slightly
altered during this process. (iii) Some samples could be

Table 10. Geographical Wine Classifications through Elemental Patterns

wines variables
measuring
technique

pattern
recognition
technique

important variables
for origin

determination ref

40 wines from France and USA 17 elements: Al, Ba, B, Cd, Ca, Cr,
Cu, Pb, Mg, Mn, Mo, Ni, P,
K, Si, Na, Sr

AES LEAST
KNN
SIMCA

Al, Ba 20

42 white Spanish wines from Rias
Baixas, Ribeiro, and
Valdeorras

7 elements: Li, Na, K, Rb, Ca, Fe, Mn AAS
AES

PCA
LDA
KNN
SIMCA
HCA

Li, Rb 21

55 Spanish wines (22 from Somontano,
14 from La Rioja, and 19 from
Cariñena) and 57 English wines

65 elements: Li, Be, Al, Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Ga, Ge, As,
Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru,
Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I,
Cs, Ba, REEs, Hf, Ta, W, Re, Os,
Ir, Pt, Au, Hg, Tl, Pb, Bi, Th, U

ICP-MS QDA Spanish wines: Cs, Mn, Cd,
Cr, Er, Ga, Sr

Spanish and U.K. wines: all

22

161 Spanish wines from the Canary
Islands (Lanzarote, La Palma,
Gran Canaria, and Tenerife)

45 variables: REEs, Pb isotope ratios,
23 other metals

ICP-MS HCA
SIMCA

Te, Re, Pt, Au, Tl, Be, Cd, Sn,
Sb, Cs, Co, As, Zr, W,
V, Ni, Pb, Ti, Cu, Zn,
Rb, Sr, Ba

23

95 Canadian red wines from
Okanagan Valley and Niagara
Peninsula

34 trace elements: Li, Be, Mg, Al, P, Cl,
Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn,
As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb,
I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, U

ICP-MS PCA
LDA

Sr, Rb, Mn, U, Al, V, Zn, Mo,
Sb, Co

24

83 red Spanish wines from the Canary
Islands (Lanzarote, La Palma,
Gran Canaria, and Tenerife)

11 elements: K, Ca, Na, Mg, Fe, Cu, Zn,
Mn, Sr, Li, Rb

AAS
AES

PCA
LDA
SOMs
BP-ANN

Li, Sr, Mg, Ca, K, Fe, Zn 25

153 red, white, and rosé Spanish wines
from the Canary Islands:
Lanzarote, La Palma, Tenerife,
El Hierro

39 trace and ultratrace elements: REEs,
Te, Re, Be, Cd, Sn, Sb, Cs, Co, As,
V, Ni, Ti, Cu, Zn, Rb, Sr, Ba, Pb,
Zr, W, Pt, U, Tl

ICP-MS FA
LDA
BP-ANN

Sr, Rb, Pb, Be, Ba, Tl, Ti, Au 26

68 red wines (grape var. Nebbiolo) from
5 subregions in Cuneo
(Piedmont, Italy)

38 elements: REEs, Al, B, Ca, Cr, Cu, Fe,
I, K, Li, Mg, Mn, Na, P, Rb, Pb, Si,
Sn, Sr, Zn, As, Ba, Be, Cd, Co, Cs,
Ga, Ge

ICP-MS PCA
LDA

Mg, Mn, Mo, Si, Ti 27
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contaminated during the winemaking process or bottling, leading
to “abnormal” values for some elements. (iv) Because the wines
were purchased from shops, we cannot exclude wrong labeling.
(v) The choice of variables is still not the best, and more research
should be done for an optimal separation.

The overall soil-plant interaction is highly complex.
Greenough et al. (13) suggested that the wine element concen-
tration could largely be related to solubility factors of the
elements present normally in soils. The uptake from the vine
depends on the solubility of these elements that, in turn, depends
strongly on the soil characteristics. Between the elements found
to be important for the classification of wines in this study, the
alkali metals Li and Cs and the alkaline earth metals Mg and
Sr, Mn and B form part of the so-called geochemical group of
silicate-associated litophile elements in soils. They tend to be
soluble in water (as a result of extremely low ionic potentials),
and therefore the vine plant takes them up from the soil quite
easily. Nevertheless, this uptake depends also on important soil
parameters such as pH,Eh (oxidation potential), or the presence
of complexing agents such as Cl-, F-, or S2-, which vary from
soil to soil. Presumably these elements are not affected by wine-
growers’ activities, and because they are not strongly influenced
by the winemaking process as already seen in the accompanying
paper, their relation in the wine may exactly reflect that in soil.

Nevertheless, some questions are still open such as why
geochemically different elements such as Fe, Zn, and Pb seem
to be important for origin classification as well. Pb has been
for years an important factor for detecting anthropological
contamination in wine due mainly to nonappropriate storing
materials or environmental pollution. Over the past 20 years
the atmospheric fallout of anthropogenic lead has significantly
decreased as a result of the phasing-out of lead additives from
gasoline. With the new enological practices Pb contamination
sources have been almost totally reduced as well, and the Pb
content that is normally found in wine (10-50 ng/mL) is mainly
due to the primary content from the soil. The usefulness of the
nine elements (Li, B, Mg, Mn, Fe, Zn, Sr, Cs, and Pb) found
here to be important for the wine provenance determination in
multivariate analysis has been many times reported in studies
with wines from all around the world (seeTables 9 and 10).
Normally they belongsbetween other parameterssto sets of
selected variables that are best suited for the wine classification
problem.

Trees.The tree method does not use a formal statistical
method but an algorithm model. Following the method of
regression or classification trees (C&RT), it is possible to
establish a graphical tree that presents all of the information in
a very simple and straightforward way. The tree begins with

Figure 5. Tenfold cross-validation regression tree for the classification of German white wines from four different wine-growing regions: Baden (B),
Rheingau (RG), Rheinhessen (RH), and Pfalz (P). At each node the variable and threshold values are noted. If samples fulfill the condition, the tree is
followed on the right branch, which starts from the node. If a sample does not fulfill the condition, the left branch, which starts from the node, is followed.
The numbers indicate the composition of each node in terms of samples accepted or rejected. In every terminal node appear the total number of
samples classified in this node (also expressed as percentage from the total in parentheses), to which group they belong, how many there are, and how
much they mean expressed as percentage from the total samples of this node.
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one node, the top decision node orroot node, where all of the
observations are collected. This branches into two groups
depending on the values of one of the variables. This variable
is among all the one that shows the best discriminating power.
Every one of this group is again split into two new groups
depending on the value of the same variable or of a second one
with better discriminating power. This procedure is repeated
with every new group, the procedure resulting in the branching
of the root node to manydecision nodesor split nodes. At the
end of each branch there is a density display showing the
distribution of observations at that point. In this case the tree is
binary because each node is split into only two subsamples.
Terminal nodesare points on the tree beyond which no further
decisions are made. It is desired that they are “pure”, namely,
containing no misclassified observations or objects within the
class.

As in DA it is necessary to check the goodness of the
classification. According to the first procedure, a 10-fold cross-
validation was performed, and the resulting TREE is shown in
Figure 5. The first variable with the strongest discriminant
power is Li, and this metal divides the original group into two
subgroups: one is already a terminal node and the other is later
split again. In terminal node 1 are present samples with [Li]e
4.4 ng/mL. This group contains 27 wine samples (26 B+ 1 P).
This terminal node is classified as characteristic for B samples.
The second subgroup is divided again according to the Zn
content into two new subgroups. The one characterized for
concentrations of Zn of<568 ng/mL is again split into two

subgroups according to the Mg content. Both subgroups are
terminal nodes. In terminal node 2 there are 28 wines (27 RG
+ 1 RH). This terminal node is classified as characteristic for
the RG samples. All of the samples belonging to terminal node
2 have [Li] > 4.4 ng/mL, [Zn]e 568 ng/mL, and [Mg]e 89.2
µg/mL. The subgroup with higher concentrations of Zn is finally
split according to the Mg concentration into terminal nodes 4
and 5. Terminal node 4 has 35 wines (25 P+ 7 RG + 3 B).
Thus, this terminal node is classified as characteristic for P
samples. All of the samples belonging to terminal node 4 have
[Li] > 4.4 ng/mL, [Zn] > 568 ng/mL, and [Mg]e 81.8 µg/
mL. Terminal node 5 contains 32 wines (24 RH+ 6 P + 2
RG). Therefore, this node is characterized as typical for RH
samples with [Li]> 4.4 ng/mL, [Zn]> 568 ng/mL, and [Mg]
> 81.8 µg/mL. On the whole(Table 11B), according to the
10-fold cross-validation method, 84% of the samples were
correctly classified. The wines worst classified were those
belonging to the RG group, only 75%, although only 4% of the
samples identified as RG are not really RG samples. The best
classified wines were B samples, with a correct classification
rate of 90%. Moreover, of all wines classified as B samples,
only 4% were from other regions.

As described for the second procedure, the samples were
divided into two sets: the learning sample set with 85 objects
(70% of the population) and the test sample set with 42 objects
(30% of the population). With the learning set a classification
rule resulting in five nodes was derived. This model was tested
for application with the test sample, and a new tree (Figure 6)

Figure 6. Regression tree for the classification of German white wines from four different wine-growing regions: Baden (B), Rheingau (RG), Rheinhessen
(RH), and Pfalz (P). Here the testing sample set (30% total samples population) is classified according to the regression tree previously performed with
the learning set samples.
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was obtained.Table 11C summarizes the recognition and the
prediction ability of the tree in the learning set and test set,
respectively; 86% of the learning sample set is correctly
classified, but a lower success quote of only 74% was found
for the test set. Outstanding in this test set is that although 100%
P samples were correctly classified, 59% of the P sample group
members come from the other regions. In practice this means
that it is possible to exclude wines from the P region with
relatively high certainty, but a positive identification is very
uncertain. For the other three groups,∼70% of the samples were
correctly classified, and they make up 90-100% the samples
of each predicted group.

A comparison of the trees obtained from the first and second
methods shows that the most important difference is that Sr
appears instead of Mg when the population is split into nodes
4 and 5. Both methods give more or less the same total
classification rates, 84 and 86%, respectively, and therefore Sr
or Mg can be used alternatively. This is confirmed if one takes
into account the positive Pearson correlation (r ) 0.71) between
the two variables for the P and RH samples.

All in all, a tree shows that Li, Mg (or Sr), and Zn are very
important elements for the origin determination of German
wines. All of these elements were also selected by QDA.

It must be taken into account that the results provided by
this study cannot necessarily be generalized. An extrapolation
to all wines from the German regions under study is beset with
problems: (i) the relatively small population of objects in each
of the groups (the number of samples used in each case might
not be large enough to give a good statistical representation of
the real situation) and (ii) the commercially purchased samples
may not have a totally unambiguous origin. Also, it would be
interesting to investigate other vintages to check the year-to-
year concentration variation of these elements of interest in the
same German regions. Otherwise, the capabilities of this method
cannot be extrapolated to other vintages.

Other multivariate techniques such as artificial neuronal
networks (ANN) could be applied to look for a better clas-
sification among regions.

Other wine characteristics such as Sr isotope ratios, classical
enological components, or some organic components are
promising tools that could improve up to 100% the differentia-
tion between sub-regions.

CONCLUSIONS

A simultaneous determination of 13 elements (in ultratrace,
trace, and major range) in wines was easily performed by SF-
ICP-MS. The simple pretreatment of the sample (1:20 dilution)
and the use of In as internal standard lead to a reliable
quantitative analysis.

Simple inspection of elemental concentrations could not be
used to differentiate the growing origin; however, multivariate
chemometrical methods were able to detect similarities between
samples according to their origin. Use of discriminant analysis
and decision tree both successfully classified wines relative to
their origin. By applying a QDA model with eight elements
[one major element (Mg), four trace elements (B, Fe, Zn, and
Sr), and three ultratrace elements (Li, Cs, and Pb)], on average
76% of unknown samples (test samples set) could be classified
correctly. The worst case was for the Pfalz samples, with a
success of 50% only. If the Pfalz samples are eliminated, a new
model with the same elements but with Mn instead of Pb can
correctly classify 88% of unknown samples.

By using a decision tree with only three elements (Li, Mg,
and Zn), a similar success quote of 74% for the classification
of unknown samples was achieved. Again, Pfalz was the worst
classified region, because although all Pfalz samples were
correctly identified, 59% of all samples assigned to be a Pfalz
wine came from other regions.

The robustness of the QDA model was not the very best, so
a tree is more recommended and even allows an easier wine
classification due to the lower number of elements necessary.

In general, chemometric methods applied here for recognition
of elemental pattern seemed to be a useful tool if determination
of wine origin is questioned. A surprisingly high correlation
between element content and wine origin was found that allows
a distinction to be made between white wines even from
geographically very close wine-growing regions in Germany.
From the strictly legal point of view, none of those methods
seem to be sufficiently reliable to be used for checking of falsely
labeled wines because unknown samples could be classified with
an accuracy of∼75% only. Nevertheless, this method can be
applied as a screening tool and as a complement to other
methods.

Table 11. Classification Quote (10-Fold Cross-Validation Method) and
Recognition and Prediction Ability (Test Set Cross-Validation Method)
of German White Wines from Baden, Rheingau, Rheinhessen, and
Pfalz by Using a Classification Tree with Only Three Variables: Li, Mg
(or Sr), and Zn

(A) Regional Distribution of the Tested Wine Samples

sample set B P RG RH total

all samples 29 32 36 30 127
learning set (70%) 19 25 23 18 85
test set (30%) 10 7 13 12 42

(B) Recognition Ability (%),
10-Fold Cross-Validation, All Samples

predicted group

origin
no. of

samples B P RG RH
% correctly
classified

B 29 26 3 0 0 90
P 32 1 25 0 6 78
RG 36 0 7 27 2 75
RH 30 0 0 1 29 97

84 (overall)
total 127 27 35 28 37

(C) Recognition Ability (%),
Learning Set (70%)

predicted group

origin
no. of

samples B P RG RH
% correctly
classified

B 19 19 0 0 0 100
P 25 1 22 0 2 88
RG 23 0 6 16 1 70
RH 18 0 2 0 16 89

86 (overall)
total 85 20 30 16 19

(D) Prediction Ability (%),
Test Set (30%)

predicted group

origin
no. of

samples B P RG RH
% correctly
classified

B 10 7 3 0 0 70
P 7 0 7 0 0 100
RG 13 0 4 9 0 70
RH 12 0 3 1 8 67

74 (overall)
total 42 7 17 10 8
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ABBREVIATIONS USED
1H NMR, nuclear magnetic resonance spectrometry; A.P.Nr.,

official control number of a certified wine in German system
(Amtliche Prüfungsnummer); AAS, atomic absorption spec-
trometry; AES, atomic emission spectrometry; ANN, artificial
neural networks; ANOVA, analysis of variance; B, Baden;
BASTEP, stepwise Bayesian analysis; BP-ANN, back-propaga-
tion artificial neural networks; C&RT, classification and regres-
sion trees; CVA, canonical variate analysis; DA, discriminant
analysis; EDGC, Euclidean distances from group centroids;
FAAS, flame atomic absorption spectrometry; F statistics, Fisher
statistics; GC-MS, gas chromatography-mass spectrometry;
HCA, hierarchical cluster analysis; HS-SPME-GC-MS, head-
space solid-phase microextraction gas chromatography-mass
spectrometry; ICP-OES, inductively coupled plasma optical
emission spectrometry; KNN,K nearest-neighbor analysis;
QDA, quadratic discriminant analysis; LDA, linear discriminant
analysis; LOD, limit of detection; LOQ, limit of quantification;
NAA, neutron activation analysis; P, Pfalz; PCA, principal
component analysis; PP, polypropylene; Q.b.A., wine with
certified origin in German system (Qualitätswein bestimmter
Anbaugebiete); QCN, quality control Nierstein; RG, Rheingau;
RH, Rheinhessen; SLDA, stepwise linear discriminant analysis;
SF-ICP-MS, sector field inductively coupled plasma mass
spectrometry; SIMCA, soft independent modeling of class
analogies; SPLOM, scatter plot matrix; TXRF, total reflection
X-ray fluorescence.
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